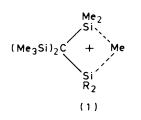
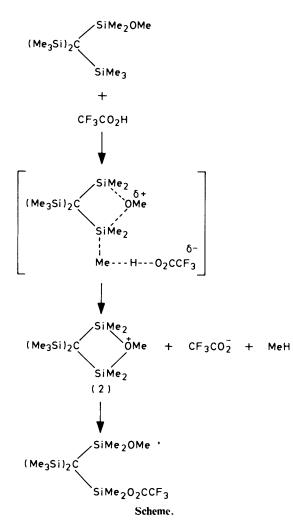
Cleavages of Silicon–Carbon Bonds in Tris(trimethylsilyl)methylsilicon Compounds by Trifluoroacetic Acid. Rearrangements and Anchimeric Assistance


Colin Eaborn,* Paul D. Lickiss, and Nazmi A. Ramadan School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 90J

> The fairly high rate of reaction of the highly sterically hindered compound $(Me_3Si)_3CSiMe_2Ph$ with CF_3CO_2H [to give $(Me_3Si)_3CSiMe_2O_2CCF_3$ and PhH] is consistent with the view that the ratedetermining step involves the transfer of a proton from the acid to the *ipso*-carbon atom of the ring. The formation of the rearranged species $(Me_3Si)_2C(SiMe_2F)(SiMe_2O_2CCF_3)$ in the reaction of $(Me_3Si)_3$ -CSiPhMeF with CF_3CO_2H suggests that the leaving of benzene from the initial protonated species generates a methyl-bridged silicon cation. Treatment of $(Me_3Si)_3CSiPhMeI$ with $AgO_2CCF_3-CF_3CO_2H$ gives the rearranged $(Me_3Si)_2C(SiPhMe_2)(SiMe_2O_2CCF_3)$, which reacts with CF_3CO_2H under reflux to give $(Me_3Si)_2C(SiMe_2O_2CCF_3)_2$. In a remarkable example of anchimeric assistance by a γ -OMe group the compound $(Me_3Si)_3CSiMe_2OMe$ reacts readily with CF_3CO_2H at room temperature with evolution of methane, and formation finally of $(Me_3Si)_2C(SiMe_2O_2CCF_3)_2$, apparently *via* $(Me_3Si)_2C-(SiMe_2OMe)(SiMe_2O_2CCF_3)$. Sulphuric acid reacts very vigorously with $(Me_3Si)_3CSiMe_2OMe$, and hydrolysis of the initial product gives the diol $(Me_3Si)_3C(SiMe_2OH)_2$. This diol can also be obtained by hydrolysis of $(Me_3Si)_2C(SiMe_2O_2CCF_3)_2$.

Compounds containing the bulky tris(trimethylsilyl)methyl groups, (Me₃Si)₃C (referred to as the 'trisyl' group, and often denoted below by the symbol Tsi) have been shown to display unusual chemical behaviour; 1-5 one of the most surprising features is the rearrangements which occur when compounds of the type (Me₃Si)₃CSiR₂X react with appropriate electrophiles, such as silver salts AgY, to give products of the type $(Me_3Si)_2C(SiR_2Me)(SiMe_2Y)$, apparently via a bridged cation of the type (1).^{3,4} Equally unusual behaviour is observed also for related compounds of the type (Me₃Si)₂C- $(SiMe_2Z)(SiMe_2X)$, in which certain groups Z can provide very large anchimeric assistance to reactions at the Si-X bond.^{5,6} We describe here some reactions of trisyl-silicon and related compounds which provide further illustrations of the types of behaviour mentioned; particular attention is paid to reactions with trifluoroacetic acid and with silver trifluoroacetate, especially those involving cleavages of Si-C bonds.

Results and Discussion


We initially examined reactions involving cleavage of Si-C bonds by trifluoroacetic acid. A preparative-scale reaction of TsiSiMe₂Ph with CF_3CO_2H was monitored by ¹H n.m.r. spectroscopy: all the signals from the aryl protons of the starting material disappeared and were replaced by a single resonance due to benzene, and work-up gave the expected TsiSiMe₂O₂CCF₃. The rate of the reaction was then measured at 37.5 °C by u.v. spectrophotometry, and the first-order rate constant was found to be 19×10^{-5} s⁻¹, 15 times as small as that $(28 \times 10^{-4} \text{ s}^{-1})$ observed for p-ClC₆H₄SiMe₃ under the same conditions. If we assume that the latter compound is *ca*. 5 times less reactive than PhSiMe₃, as it is in CH₃CO₂H-H₂SO₄,⁷ then we can conclude that TsiSiMe₂Ph is roughly 75 times less readily cleaved than Me₃SiPh. This factor is small in relation to the very great inhibition by the trisyl group to nucleophilic attack at a silicon atom to which it is attached,¹ and the result is consistent with the view that the rate-determining step in cleavage of aryl-silicon bonds by acids is normally the attachment of a proton to the carbon atom of the aryl-Si bond.^{8.9} The lower rate of cleavage of TsiSiMe₂Ph than of Me₃SiPh can reasonably be attributed to steric hindrance to (a) solvation of the (forming) protonated species, and (b) the geometry change at the ipso carbon.

If this picture of the reaction is correct, then the separation of benzene from the initial protonated complex should leave a silicocation of type (1),^{1,3,4} and so rearrangement would be expected. This could not (without isotopic labelling) be observed in the reaction of TsiSiMe₂Ph because the rearranged and unrearranged products would be identical, and so we turned to TsiSiMePhF. This compound reacted with CF₃CO₂H during 65 h under reflux to give almost exclusively the rearranged species (Me₃Si)₂C(SiMe₂F)(SiMe₂O₂CCF₃). (The yield of this product isolated pure was not high, presumably because of reactions during work-up, but the ¹H n.m.r. spectrum of the crude product was identical, except for some very small additional peaks, with that of the purified material.) The markedly lower reactivity of TsiSiMePhF than of TsiSi-Me₂Ph towards the acid can be attributed to the inductive effect of the fluorine atom, which reduces the stabilization of the Wheland intermediate by the silyl group, and is consistent with observations in simpler systems.9

Treatment of TsiSiPhMeI with an equimolar amount of AgO₂CCF₃ in CF₃CO₂H at room temperature gave the rearranged species $(Me_3Si)_2C(SiMe_2Ph)(SiMe_2O_2CCF_3)$. (We expected this to be the major product, but, in the light of the results obtained in reactions of this iodide with other silver salts under other conditions ³ we were surprised that no detectable amount of the unrearranged product TsiSiPhMeO₂-CCF₃ was present.) The initial product was then refluxed with CF₃CO₂H for 7 h (though reaction may have been complete in a much shorter time), after which all the original ¹H n.m.r. signals from the aryl protons had disappeared and been replaced by a singlet due to benzene. Removal of the solvent gave (Me₃Si)₂C(SiMe₂O₂CCF₃)₂.

A similar reaction sequence was carried out starting from TsiSiPh₂I. The initial product from reaction with AgO₂CCF₃-

CF₃CO₂H was the expected $(Me_3Si)_2C(SiPh_2Me)(SiMe_2O_2-CCF_3)$. In the subsequent refluxing of this product with CF₃CO₂H all the original aryl proton peaks disappeared during 15 h and were replaced by a singlet due to benzene, but the δ 0.1–0.6 region of the spectrum showed a large number of peaks and thus the presence of several products, and these were not investigated. No reaction occurred when solutions of TsiSiCl₃ or TsiSiPhCl₂ in AgO₂CCF₃–CF₃CO₂H were refluxed for 24 h.

We next turned to the cleavage of Si-Me bonds. The compound $(Me_3Si)_4C$, as expected, underwent no reaction when refluxed with CF_3CO_2H for 3 h. In contrast, TsiSiMe₂-OMe reacted readily at room temperature, and work-up after 30 min gave $(Me_3Si)_2C(SiMe_2O_2CCF_3)_2$. When the reaction was carried out in an n.m.r. tube at 35 °C the ¹H n.m.r. spectrum showed that after 4 min *ca*. 25% of the TsiSiMe_2OMe was still present along with 30% of $(Me_3Si)_2C(SiMe_2O_2CCF_3)_2$, and a third component, accounting for the remaining 45%, gave signals consistent with its being $(Me_3Si)_2C(SiMe_2OMe)-(SiMe_2O_2CCF_3)_2$. No further reaction both this and the starting material completely disappeared, leaving only $(Me_3Si)_2C(SiMe_2O_2CCF_3)_2$. No further reaction occurred during 5 h under gentle reflux.

This very ready cleavage of an Si⁻Me bond by CF_3CO_2H is remarkable. It can be attributed to the large anchimeric assistance by the γ -OMe group [and thus the stability of the bridged cation (2)], as depicted in the Scheme. [The ability of

the γ -OMe group to induce abnormally high reactivity in systems of the type under study was first suspected because of the result just described, and was confirmed more recently by observation of the very high reactivity of the compound (Me₃Si)₂C(SiMe₂OMe)(SiMe₂Cl) in methanolysis.⁵] The subsequent conversion of (Me₃Si)₂C(SiMe₂OMe)(SiMe₂O₂CCF₃) into (Me₃Si)₂C(SiMe₂O₂CCF₃) presumably involves anchimeric assistance by the O₂CCF₃ group to leaving of the protonated methoxy group.

In view of the anchimeric assistance which can be provided by a γ -O₂CCF₃ group, we thought that (Me₃Si)₂C(SiMe₂O₂-CCF₃)₂ might undergo solvolysis fairly readily (*cf.* ref. 5). No reaction was observed in 1 h in refluxing MeOH, but complete conversion into the diol (Me₃Si)₂C(SiMe₂OH)₂ occurred upon treatment with (*a*) 1 : 1 MeOH-H₂O at 75 °C for 1 h or (*b*) 10% H₂O-Me₂CO under reflux for 8 h. (The mono-trifluoroacetate TsiSiMe₂O₂CCF₃ is inert under these conditions.)

The diol was also made in another way. Since CF₃CO₂H reacted readily with TsiSiMe2OMe, concentrated sulphuric acid, a much stronger acid, could be expected to react even more readily; indeed, a vigorous reaction, with gas evolution, occurred when the acid was added to TsiSiMe₂OMe in an n.m.r. tube. The 'H spectrum taken as quickly as possible showed no signals from the starting material, but instead two new peaks in 2:3 ratio. (No further change occurred in 5 h.) An attempt to isolate the product from a larger scale reaction gave trouble because, it seemed, of hydrolysis during work-up; thus in another experiment, 5 min after mixing of the reagents the solution was added to ice-water; extraction with CH2Cl2 and removal of the solvent gave exclusively (Me₃Si)₂C-(SiMe₂OH)₂. (This procedure provides a good route to this diol.) It seems very likely that the initially observed product was (Me₃Si)₂C(SiMe₂OSO₃H)₂, formed via the very reactive (Me₃Si)₂C(SiMe₂OMe)(SiMe₂OSO₃H).

In view of the remarkable effects of the γ -OMe group, we decided to examine briefly some compounds containing the methoxy group at the functional centre. Thus TsiSiMe(OMe)I was treated with an excess of AgO₂CCF₃ in CF₃CO₂H for 15 min and the solution was filtered and evaporated to give a solid, which from its ¹H n.m.r. spectrum was mainly TsiSiMe(OMe)(O₂CCF₃) along with *ca*. 10% of (Me₃Si)₂C(SiMe₂O₂-CCF₃)₂. Thus the presence of the α -OMe group greatly reduces the tendency to formation of rearranged product. No reaction occurred when the TsiSiMe(OMe)(O₂CCF₃) was refluxed with CF₃CO₂H for 1 h, indicating that anchimeric assistance by an OMe group to cleavage of a γ -Si–Me bond is greatly reduced by the presence of an α -O₂CCF₃ group.

Experimental

Spectra.—The ¹H n.m.r. spectra of isolated products were recorded for solutions in CCl₄ containing CH₂Cl₂ as lock at 90 MHz with a Perkin-Elmer R32 spectrometer; the chemical shifts in CF₃CO₂H are relative to internal SiMe₄. The ¹⁹F n.m.r. spectra were recorded for solutions in CCl₄ containing CFCl₃ as reference at 84.6 MHz with the same instrument, except for the spectrum of (Me₃Si)₂C(SiMe₂F)(SiMe₂O₂CCF₃), for which a Bruker WP 8051 spectrometer (operating at 75.4 MHz) was used; negative shifts are upfield from CFCl₃. The i.r. spectra were recorded for Nujol mulls between NaCl plates with a Perkin-Elmer 1574 spectrophotometer.

Starting Materials.—The compounds $TsiSiMe_2OMe_1$, $TsiSiPhMeF_1$, $TsiSiPhMeI_1$, $TsiSiMe_2Ph_1$, $TsiSiCl_3$, $TsiSiMeCl_2$, and $(Me_3Si)_2C(SiMe_2O_2CCF_3)_2$ were made by published methods; ^{3.6.10,11} TsiSiMe(OMe)H and TsiSiMe(OMe)I were provided by Dr. D. E. Reed.¹²

Reaction of TsiSiMe₂Ph *with* CF₃CO₂H.—(a) A solution of TsiSiMe₂Ph (1.0 g, 2.7 mmol) in CF₃CO₂H (10 cm³) was refluxed for 6 h. [Reaction must have been complete in a much shorter time; see (b).] In the ¹H n.m.r. spectrum of the solution the original multiplet due to the aryl protons had been replaced by a singlet at δ 7.15 attributable to benzene. Addition of hexare (50 cm³) followed by evaporation left a solid which on the basis of its ${}^{1}H$ n.m.r. spectrum [δ 0.31 $(27 \text{ H}, \text{ s}, \text{SiMe}_3)$ and 0.64 (6 H, s, SiMe₂)] was judged to be TsiSiMe₂O₂CCF₃. A sample recrystallized from MeOH and sublimed at low pressure had the same ¹H n.m.r. spectrum, and this and the other physical properties were identical with those of an authentic sample.3 The ¹⁹F n.m.r. spectrum showed a singlet at -76.2 p.p.m., and the mass spectrum had the base peak at m/z 387 ($[M - Me]^+$) and other significant peaks at 309 (30%), 293 (20), 201 (50, $[M - Me_3SiO_2CCF_3 Me]^+$), and 73 (80, $[Me_3Si]^+$).

(b) The rate of cleavage of TsiSiMe₂Ph in *ca.* 0.005Msolution in CF₃CO₂H (the organosilane was initially dissolved in a very small amount of CCl₄) at 37.5 \pm 0.2 °C was determined by recording the change in the optical density at 272 nm (*cf.* ref. 13). Good first-order kinetics were observed and the value of the first-order rate constant (average of three runs) was 19 \times 10 ⁵ s ¹.

A similar procedure, also using a wavelength of 272 nm, gave a value of the first-order rate constant for p-ClC₆H₄-SiMe₃ of 28 \times 10⁻⁴ s⁻¹.

Reaction of TsiSiPhMeF with CF₃CO₂H.—In a small-scale reaction monitored by ¹H n.m.r. spectroscopy, the original aryl proton multiplet was replaced by a singlet at δ 7.15 due to benzene during 65 h under reflux.

A solution of TsiSiPhMeF (1.0 g, 2.7 mmol) in CF₃CO₂H (10 cm^3) was refluxed for 65 h, then added to hexane (50 cm³). Removal of the solvent left a solid which from its ¹H n.m.r. spectrum [δ 0.40 (18 H, s, Me₃Si), 0.55 (6 H, d, J 7.5 Hz, SiMe₂F), and 0.74 (6 H, s, SiMe₂O₂CCF₃)] was judged to be virtually pure (fluorodimethylsilyl)(dimethyltrifluoroacetoxysilyl)bis(trimethylsilyl)methane. However, after recrystallization from MeOH followed by sublimation under reduced pressure, the recovered material (0.50 g, 45%) appeared to contain small amounts of impurities, and so it was subjected to preparative t.l.c. (SiO₂, hexane), which removed small amounts of two other compounds from the main product. The purified sample of the latter, m.p. 160 °C, v(C=O) 1 765 cm⁻¹, gave the ¹H n.m.r. spectrum already noted; the ¹⁹F n.m.r. spectrum showed peaks at -75.8 (3 F, s, CF₃) and -144.1 [1 F, septet, ³J(FH) 7.5 Hz, SiMe₂F] (Found: C, 39.2, H, 7.8. C₁₃H₃₀F₄- O_2Si_4 requires C, 38.4; H, 7.4°,).

Reaction of TsiSiPhMeI and (Me₃Si)₂C(SiPhMe₂)(SiMe₂-O₂CCF₃) with AgO₂CCF₃-CF₃CO₂H.—A solution of AgO₂-CCF₃ (0.24 mmol) was made by dissolving Ag₂CO₃ (0.033 g, 0.12 mmol) in CF₃CO₂H (3 cm³) and TsiSiPhMeI (0.109 g, 0.23 mmol) was added. The mixture was stirred at room temperature for 30 min then filtered, and the filtrate was evaporated. A solution of the residual solid in CCl₄ (containing a little CH_2Cl_2) showed ¹H n.m.r. peaks at δ 0.29 (18 H, s, SiMe₃), 0.40 (6 H, s, SiPhMe₂), 0.61 (6 H, s, SiMe₂O₂CCF₃), and 7.2-7.8 (5 H, m, Ph), judged to be attributable to (Me₃Si₂)C(SiPhMe₂)(SiMe₂O₂CCF₃). The solid was recovered and its solution in CF₃CO₂H (3 cm³) was refluxed for 7 h, after which the multiplet at δ 7.2–7.8 had been replaced by a singlet at δ 7.15 due to benzene. The solvent was removed under reduced pressure to leave a solid which had a ¹H n.m.r. spectrum identical with that of (Me₃Si)₂C(SiMe₂O₂CCF₃)₂. A sample (0.06 g, 52°,) recrystallized from EtOH had physical constants identical with those of an authentic sample.

Reaction of TsiSiPh₂I with AgO₂CCF₃-CF₃COOH.-Silver carbonate (0.028 g, 0.10 mmol) was dissolved in CF₃-CO₂H (3 cm³) and TsiSiPh₂I (0.10 g, 0.18 mmol) was added. The mixture was stirred at room temperature for 30 min then filtered, and the filtrate was added to hexane (20 cm³). The solvents were removed under reduced pressure to leave a solid which, from its ¹H n.m.r. spectrum, was judged to be almost exclusively (dimethyltrifluoroacetoxysilyl)(methyldiphenylsilyl)bis(trimethylsilyl)methane, δ 0.30 (18 H, s, SiMe₃), 0.46 (6 H, s, SiMe₂O₂CCF₃), 1.12 (3 H, s, SiPh₂Me), and 7.3-8.0 (10 H, m, Ph). A sample recrystallized from EtOH, m.p. 94 °C, v(C=O) 1 765 cm⁻¹, gave the same ¹H n.m.r. spectrum and showed a singlet in its ¹⁹F n.m.r. spectrum at -75.1 p.p.m. (Found: C, 54.4; H, 7.3. C₂₄H₃₇F₃O₂Si₄ requires C, 54.7; H, 7.1%). The base peak in the mass spectrum was at m/z 197 ($[Ph_2MeSi]^+$), and other significant peaks were at m/z526 (1%, $[M]^+$), 511 (5, $[M - Me]^+$), 216 (55), 135 (60, [PhMe₂Si]⁺), 105 (75), and 73 (20, [Me₃Si]⁺).

Reaction of $(Me_3Si)_2C(SiPh_2Me)(SiMe_2O_2CCF_3)$ with CF₃CO₂H.—The reaction just described was repeated, but after the removal of the AgI the filtrate was refluxed for 15 h. After this time the original multiplet due to the aryl protons had been replaced by a singlet due to benzene. There were numerous peaks in the δ 0.1—0.6 region, and the products were not investigated.

Reaction of TsiSiMe₂OMe with CF₃CO₂H.—(a) When TsiSiMe₂OMe was dissolved in CF₃CO₂H in an n.m.r. tube (at 35 °C), the ¹H n.m.r. spectrum, in addition to singlets at δ 0.45 and 0.83 in 9 : 2 ratio due to TsiSiMe₂OMe, showed singlets at δ 0.42 and 0.78 in 3 : 2 ratio attributable to (Me₃Si)₂-C(SiMe₂O₂CCF₃)₂ and further singlets at δ 0.40, 0.56, 0.76, and 3.58 in 6 : 2 : 2 : 1 ratio thought to be due to (Me₃Si)₂-C(SiMe₂OMe)(SiMe₂O₂CCF₃). After 4 min these three compounds were present in *ca*. 25 : 45 : 30 ratio, this point being that at which the concentration of the (presumed) (Me₃Si)₂C(SiMe₂OMe)(SiMe₂O₂CCF₃) reached its maximum. After 30 min only (Me₃Si)₂C(SiMe₂O₂CCF₃)₂ was present. No further change occurred during 5 h under gentle reflux.

[It is noteworthy that the chemical shifts in CF₃CO₂H of these and other compounds studied were significantly different from those in CCl₄. Thus in the latter solvent TsiSiMe₂OMe shows resonances at δ 0.36 and 0.70, and (Me₃Si)₂C(SiMe₂O₂-CCF₃)₂ resonances at δ 0.32 and 0.65.]

(b) A solution of TsiSiMe₂OMe (0.14 g) in CF₃CO₂H (5 cm³) was kept at room temperature for 30 min then added to hexane (25 cm³). The solvents were evaporated off to leave (Me₃Si)₂C(SiMe₂O₂CCF₃)₂ (0.16 g, 74%), the properties of which were identical with those of an authentic sample (Found: C, 36.2; H, 6.2. Calc. for C₁₅H₃₀F₆O₄Si₄: C, 36.0; H, 6.0%).

Reaction of TsiSiMe(OMe)I with AgO₂CCF₃-CF₃CO₂H.--Silver carbonate (0.44 g) was dissolved in CF₃CO₂H (15 cm³) and TsiSiMe(OMe)I (0.34 g) was added with stirring. After 15 min the solution was filtered to remove AgI, and the solvent was removed under reduced pressure to leave a solid, the ¹H n.m.r. spectrum of which indicated that it consisted mainly of TsiSiMe(OMe)(O₂CCF₃) [δ 0.27 (27 H, s, SiMe₃), 0.60 (3 H, s, SiMe), and 3.64 (3 H, s, OMe)] along with about 10% of (Me₃Si)₂C(SiMe₂O₂CF₃)₂. Recrystallization from MeOH followed by sublimation under reduced pressure gave pure [methoxy(methyl)trifluoroacetoxysilyl]tris(trimethylsilyl)methane (0.26 g, 79%), m.p. 207–210 °C (sealed tube), v(C=O) 1 765 cm⁻¹, ¹H n.m.r. spectrum as just noted (Found: C, 40.2; H, 8.1. C₁₄H₃₃F₃O₃Si₄ requires C, 40.2; H, 7.9%). Treatment of $TsiSiCl_3$ and $TsiSiPhCl_2$ with AgO_2CCF_3 -CF_3CO_2H.—(a) Silver carbonate (20 mmol) was dissolved in CF_3CO_2H (10 cm³), $TsiSiCl_3$ (1.30 mmol) was added, and the solution was refluxed for 24 h. No change was observed in the ¹H n.m.r. spectrum.

(b) The same result was obtained from $TsiSiPhCl_2$ (5 mg), Ag_2CO_3 (0.033 g), and CF_3CO_2H (3 cm³).

Reaction of TsiSiMe₂OMe with Sulphuric Acid.—(a) Concentrated sulphuric acid (1 cm³) was added to a solution of TsiSiMe₂OMe (10 mg) in two drops (ca. 0.1 cm³) of CH₂Cl₂ in an n.m.r. tube. Vigorous gas evolution occurred, and the ¹H n.m.r. spectrum showed only two singlets, at δ ca. 0.95 and 0.57, in 2 : 3 ratio. No further change occurred during 5 h at room temperature.

(b) Concentrated sulphuric acid (1 cm³) was added to a solution of TsiSiMe₂OMe (20 mg) in two drops (*ca*. 0.1 cm³) of CH₂Cl₂. After 5 min the solution was added carefully to ice-water. Extraction with CH₂Cl₂, followed by separation, drying (MgSO₄), and evaporation of the extract gave a solid which had ¹H n.m.r. and mass spectra identical with those of an authentic sample of (Me₃Si)₂C(SiMe₂OH)₂ (see later).

Treatment of $TsiSiMe(OMe)(O_2CCF_3)$ with CF_3CO_2H .— No reaction occurred, as indicated by the ¹H n.m.r. spectrum, when a solution of $TsiSiMe(OMe)(O_2CCF_3)$ in CF_3CO_2H was refluxed for 1 h.

Solvolysis of $(Me_3Si)_2C(SiMe_2O_2CCF_3)_2$.—(a) No reaction occurred, as indicated by the ¹H n.m.r. spectrum, when a solution of $(Me_2Si)_2C(SiMe_2O_2CCF_3)_2$ in MeOH was refluxed for 1 h.

(b) A mixture of a small amount of $(Me_3Si)_2C(SiMe_2O_2-CCF_3)_2$ with 1 : 1 v/v H₂O-MeOH in an n.m.r. tube was kept at 75 °C for 1 h. After this time the solution showed only two singlets, in 3 : 2 ratio, at δ *ca*. 0.40 and 0.48, believed to be due to $(Me_3Si)_2C(SiMe_2OH)_2$.

(c) A solution of $(Me_3Si)_2C(SiMe_2O_2CCF_3)_2$ (0.95 g) in 10% v/v H₂O-Me₂CO (15 cm³) was refluxed for 8 h. After cooling, the solvent was evaporated off under reduced pressure. The residue [the ¹H n.m.r. spectrum of which indicated that it was almost exclusively (Me_3Si)_2C(SiMe_2OH)_2] was sublimed to give *bis(hydroxydimethylsilyl)bis(trimethylsilyl)methane* (0.31 g, 53%); ¹H n.m.r. spectrum δ 0.28 (18 H, s, SiMe_3), 0.34 (12 H, s, SiMe_2), and 2.15br (2 H, s, OH) (Found:

C, 43.0; H, 10.45. $C_{11}H_{32}O_2Si_4$ requires C, 42.8; H, 10.45%). In the mass spectrum the base peak was at m/z 275 ($[M - H_2O - Me]^+$); there was no parent ion peak, and the peak at m/z 293 ($[M - Me]^+$) had a relative intensity of only 5%. Other significant peaks were at m/z 292 (3%, $[M - CH_4]^+$), 291 (8, $[M - OH]^+$), 290 (7, $[M - H_2O]^+$), 219 (11), 203 (20), 187 (35), 129 (25), and 73 (50, $[Me_3Si]^+$).

Acknowledgements

We thank the S.E.R.C. for general support (via C. E.) and the award of a Research Studentship (to P. D. L.), and Dow Corning, Ltd., for gifts of chemicals.

References

- I C. Eaborn, J. Organomet. Chem., 1982, 239, 93, and references therein.
- 2 C. Eaborn, K. D. Safa, A. Ritter, and W. Binder, J. Chem. Soc., Perkin Trans. 2, 1982, 1397; C. Eaborn, P. D. Lickiss, G. Marquina-Chidsey, and E. Y. Thorli, J. Chem. Soc., Chem. Commun., 1982, 1326; C. Eaborn and F. M. S. Mahmoud, J. Chem. Soc., Perkin Trans. 2, 1981, 1309.
- 3 C. Eaborn, D. A. R. Happer, S. P. Hopper, and K. D. Safa, *J. Organomet. Chem.*, 1980, **188**, 179.
- 4 C. Eaborn and S. P. Hopper, J. Organomet. Chem., 1980, 192, 27.
- 5 C. Eaborn and D. Reed, J. Chem. Soc., Chem. Commun., 1983, 495.
- 6 C. Eaborn and S. P. Hopper, J. Organomet. Chem., 1979, 170, C51.
- 7 F. B. Deans and C. Eaborn, J. Chem. Soc., 1959, 2299.
- 8 C. Eaborn, J. Organomet. Chem., 1975, 100, 43.
- 9 C. Eaborn and R. W. Bott in 'Organometallic Compounds of the Group IV Elements,' ed. A. G. MacDiarmid, Dekker, New York, 1968, pp. 407–431.
- 10 S. S. Dua, C. Eaborn, D. A. R. Happer, S. P. Hopper, K. D. Safa, and D. R. M. Walton, *J. Organomet. Chem.*, 1979, **178**, 75.
- 11 C. Eaborn, P. B. Hitchcock, and P. D. Lickiss, J. Organomet. Chem., 1981, 221, 13.
- 12 D. E. Reed, D. Phil. Thesis, University of Sussex, 1982.
- 13 C. Eaborn, P. M. Jackson, and R. Taylor, J. Chem. Soc. B, 1966, 613.

Received 10th May 1983; Paper 3/783